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Abstract 

Diagrams with the c / a  ratio as ordinate and 
cos (180 ° - / 3 )  as abscissa are given, which allow one 
to find out how a given monocl in ic  unit cell can be 
t ransformed so that a and c are the shortest t ranslat ion 
vectors compat ib le  with the symmetry of the space 
group in a setting corresponding to the s tandard 
space-group symbol  given in International Tables for  
Crystallography [Vol. A. (1983). Dordrecht:  Reidel] 
[denoted as IT(1983)], which means  b axis unique 
and cell choice 1 where applicable.  The diagrams 
contain the t ransformat ion matrices and indicate 
whether the origin of the t ransformed cell has to be 
shifted in order to obtain a structure description with 
the Wyckoff positions listed in IT (1983). A 'best '  
monocl in ic  unit  cell consistent with cell choice 1 is 
one of the requirements for a standardized description 
of crystal-structure data according to Parth6 & Gelato 
[Acta Cryst. (1984), A40, 169-183]. 

Introduction 

This work is a complement  to the earlier paper  on 
structure data s tandardizat ion (Parth6 & Gelato,  
1984) in so far as a s imple test is given, which allows 
one to decide whether  or not a give.n monocl in ic  cell 
is the correct one for the s tandardizat ion of  the atom 
coordinates.  

0108-7673/85/020142-10501.50 

A s tandardizat ion procedure may be based on 
various phi losophies  such as relying on geometrical  
relat ionships,  crystal chemical  considerat ions or sym- 
metry. For reasons discussed in our earlier paper  we 
choose symmetry  as the basis for our standard.  The 
first step in the s tandardizat ion of crystal-structure 
data is the proper choice of  a unit cell. We proposed 
for monocl in ic  structures the setting that corresponds 
to the s tandard space-group symbol with b axis 
unique and cell choice 1 as given in IT (1983) and a 
unit-cell basis, always with /3 non-acute,  with the 
following characteristics: 

a relabelled Niggli reduced cell* such that b is the 
unique axis and lal<lcl for P2, P2~, Pm, P 2 / m ,  
P21/ rn ; 

a cell where a and c are the shortest t ranslat ion 
vectors compat ible  with the condit ion of b axis unique 
and cell choice 1 for space groups Pc, P2/c ,  P2~/c, 
C2, Cm, Cc, C 2 /  m and C2/c .  

The b-axis setting of the space group with cell 
choice 1 as given in IT(1983) corresponds to the only 
space-group description given in Internationale Tabel- 
len zur Bestimniung yon Kristallstrukturen (1935) 
[IT( 1935)] and the '2nd setting' in International Tables 

* This is a Niggli reduced cell [see IT(1983), pp. 737-744] but 
with interchanged axes where necessary. 

© 1985 International Union of Crystallography 
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• for  X-ray  Crystallography (1952)  [IT(1952)]. In 
IT(1983) this space-group description, is always 
treated first and its short Hermann ,  Mauguin symbol, 
which we use here too, is printed as the standard 
symbol in b01d face type in the heading of all pages 
treating the different descriptions of a monoclinic 
space group. 

For the standardization of a mon0clinic crystal 
structure it is thus not only necessary to transform to 
the space-group setting with b axis unique and cell 
choice l, but also to find the smallest possible basis 
vectors for this setting. This cell we shall call the 'best' 
cell for cell choice 1. The particular reasons why we 
give preference to the best cell consistent with cell 
choice 1 instead of a fully reduced cell with c~ a >- 1 
and cell choices different from 1 is discussed below. 
A study of the literature reveals that many monoclinic 
crystal structures have been described with a setting 
corresponding to the standard space-group symbol 
(b axis unique and cell choice 1). The a and c vectors 
are, however, no t  always the smallest possible (and 
this is true not only of the older literature). There are 
now computer programs available to perform the 
unit-cell reduction [XRAY system (Stewart, Machin, 
Dickinson, Ammon, Heck & Flack, 1976), 
N B S * A I D S 8 0  (Mighell, Hubbard & Stalick, 1981), 
the program written by Le Page (1981), S T R U C T U R E  
T I D Y  (Gelato & Parth6, 1985)]. There are, however, 
no simple graphical methods available to see immedi- 
ately if a given unit cell is the best one or not. A 
nomogram for monoclinic transformations has been 
published by Donnay in the first edition of Crystal 
Data  (Donnay & Nowacki,  1954). Repeated use of 
this nomogram leads to a fully reduced cell, but not 
always to a setting corresponding to the standard 
space-group symbol with cell choice 1. As will be 
seen the problem is not without complications 
because certain cell transformations in certain space 
groups require a shift of origin in order to describe 
the transformed structure with the Wyckoff positions 
as given in IT(1983). It is the purpose of this study 
to present diagrams that, using as input the c / a  ratio 
and the cos (180°-/3)  value only, allow us to see 
whether or not a unit-cell transformation is necessary 
and whether or not a shift of origin is required for it. 

T h e  Cla  versus c o s  ( 1 8 0  ° -  f l )  d i a g r a m *  
. ,  

Each monoclinic unit cell with b axis unique can be 
represented by a point in a c / a  versus cos (180 ° - /~ )  
diagram as shown in Fig. 1. A unit-cell transformation 
changes the position of the point in the diagram. 

Let a, b and c be the basis vectors of a monoclinic 
structure with b axis unique. We assume that the 

structure .is described with the Wyckoff positions•as 
printed in IT(1983) and that the unit-cell volume is 
the smallest possible. The. transformed basis vectors 
a', b', c' are related to the original ones by the follow- 
ing relations: 

a' = p a  

b' = 

c' = ra  

+ q c  

tb ( l )  

+se .  

Since we have assumed that the volume before 
transformation is the smallest possible and since we 
make a basis trasformation only, the parameters p, q, 
t, r and s must  be integers. The condition that the 
transformation should not change the volume of the 
unit cell leads to the following relations: 

(ps  - qr)t  = 1 (2a) 
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* We restrict our considerations to monoclinic cells with b axis 

unique. •A transformation should be applied to cells with c axis 
unique in order to obtain a cell with b axis unique. 

Fig. I. c/a versus cos (180°-/3) diagram with inscribed 'first' 
transformation matrices, obtained from the border line 
equations. The four-digit matrix elements are in normal type if 
the b vector is unchanged, but in italics if b changes direction. 
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and 

with 

and 

ac 
cos ( /3 ' -90°)  = a-7~c, cos (/3 - 9 0  °) (2b) 

a '  = [( pa)Z + (qc)Z + 2pqac cos fl]l/2 

c' = [(ra) 2 + (sc) 2 + 2rsac cos/3] u2. 

Since t can have only the value +1 or -1  we have 
introduced in all figures a shortened form of the 
transformation matrix. The four digits indicate the 
matrix elements p q r s. They are written in normal 
type if t = 1 or in italics if t = - 1 .  

We note in Fig. 1 that the c /a  versus cos (180°- /3)  
diagram consists of different fields with different 
matrix elements inscribed. The border lines between 
the different fields correspond to cases where a trans- 
formed vector is identical in length to an original 
vector. Expressing this with the cosine rule in a 
triangle 

p2aZ+ q2c2--2pqac cos (180°-/3)  = a 2 (3a) 

and 

r2a2+s2c2-2rsac cos (180°-/3)  = c 2, (3b) 

we obtain the border line equations 

c _ P{cos  (180°-/3)  
a q 

p 2 -  1] ' /2} 
± [cos  (180°-/3)---7- J 

and 

c r{ 
- cos (180°- /3)  

a s 

(4a) 

8 2 - 1 ] " 2 }  -' 
+ cos 2 (180o-/3)-----~---j (4b) 

The straight lines in Fig. 1 (with the exception of 
the horizontal line) correspond to solutions of (4a) 
with p = 1 and the hyperbolae to solutions of  (4b) 
with s = 1. Border lines corresponding to solutions of 
(4a) and (4b) with p = 2 and s = 2 or higher values 
occur with c0s(180°-/3)>_0.866. In order not to 
overload the right side of the diagram with border 
lines and since monoclinic structures normally are 
published with/3 angles smaller than 150 °, an abscissa 
break-off point of cos ( 180 ° - / 3 )  = 0.866 was chosen. 
Also, border lines with p = 1 and q >  5 (Fig. 1) or 
q > 8 (Figs. 2, 3, 4) have not been drawn. 

The simplest approach normally used by crystal- 
lographers, for deciding whether a cell can be 
reduced, consists in a comparison between the projec- 
tion of one axis, say a, on the second axis, say c, and 
the length of  axis c. 

If 

a cos (180°-/3)<½1 c (50) 
or 

Icl cos ( 180 ° - /3  < ½1al, (5 b) 

a cell reduction (leading to a new smaller a' or a new 
smaller c') is possible. If the inequality sign is replaced 
by an equal sign, (5a) and (5b) correspond to (4a) 
and (4b) with p, q, r and s =  1. It is, however, 
necessary to consider also unit-cell reductions with q 
and r values greater than 1. 

The pqrs matrix elements of a 'first' transformation 
matrix, which transfers the point to a neighbouring 
field situated towards smaller cos (180 ° - / 3 )  values, 
correspond to the p, q, r and s values of the two 
border line equations limiting the field on the left.* 
In Fig. 1 these first transformation matrices are indi- 
cated together with the p, q and r, s values of the 
border lines. 

Note that: 
(1) only those matrices are given that lead to cells 

with smaller a' or c' vector, with /3' non-acute and 
with (ps - qr) t = 1" 

(2) from (3a) and (3b) we see that the products 
pq and rs must be non-negative [/3' being non-acute, 
cos (180 ° - / 3 ' )  is positive]. Thus p and q must have 
the same sign; and so must r and s; 

(3) an equivalent matrix exists where p, q, r and s 
have changed signs; t as well as a ' ,  {c' |and /3' are 
not affected by this sign change. Arbitrarily we choose 
the matrix where r and s have non-negative values; 

(4) the condition ( p s - q r ) t  = 1 is the reason why 
the field to the right of the border lines with p = 1, 
q = 1 and r = 1, s = 1 is labelled fOOl or fl-Ol instead 
of 1111; 

(5) the horizontal line at c /a  = 1, together with the 
0110 matrix below that line and to the left of the line 
with p = 1 and q = 1, corresponds to a special transfor- 
mation that simply ensures that la'l < Ic'l. 

The reduction of the unit cell for space groups P2, P2~, 
Pm,  P 2 /  m and P 2  ff m 

As stated in the Introduction, for the standard descrip- 
tion it is desired to have a cell where b is the unique 
axis, where a and c are the shortest possible transla- 
tion vectors and where, further, lal < Icl. This means 
the unit cell has to be transformed so that its plot is 
in the 1001 field. The first transformation matrix 
inscribed in Fig. 1 is not necessarily the desired matrix 
since it does not necessarily transform directly to the 
I001 field. Thus the procedure has to be repeated by 

* The values that characterize the straight lines underneath the 
point will give a larger a value, the values characterizing the 
hyperbola to the right give a larger c value instead of the desired 
smaller a and c values. 
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transforming the unit cell again with the first transfor- 
mation matrix inscribed in the new field until finally 
the 1001 field is reached. 

The procedure is demonstreated in Fig. 1 with a 
cell that has a plot in the 1211 field (point A). Three 
successive transformations lead finally to the 1001 
field (from point A--> B --> C --> D). Of interest for us 
is the transformation of the original plot (A) to the 
plot in the 1001 field (D)  in one ~tep. The correspond- 
ing matrix can be obtained by matrix multiplication 
of the three successive transformation matrices 
according to -.. 

D<--A D e C  C<--B B<--A 

(: 0)(01 )(')('°i) 1 0 1 0 0 1 1 0 

1 = 1 0 0 1 1 0 0 

0 0 0 0 0 1 1 0 

In Fig. 2 only one-step-transformation matrices are 
inscribed, which lead directly to the 1001 field. We 
note that in Fig. 2 1101 has been written into the field 
corresponding to the 1211 field of Fig. 1. 

In Fig. 2 fields with matrix elements written in 
normal type and in italics (meaning the b axis changes 
sign) are arranged in checkerboard fashion. Cell 
transformations using the matrix elements of Fig. 2 
lead to best cells that are fully reduced (relabelled 
Niggli reduced) cells, as discussed in chapter 2.16 of 
IT(1983). All matrices inscribed in Fig. 2 were tested 
with a computer program to calculate Niggli reduced 
unit cells (program NBS*AIDS80; Mighell, Hubbard 
& Stalick, 1981). 

The border lines in Fig. 2 are drawn in three differ- 
ent ways, which relate to the shape of the monoclinic 
mesh after the transformation (new axes a' and c') 
for unit cells having originally their representative 
point on these lines. Points positioned on long-dashed 
lines lead after transformation to a rectangular mesh 
w i t h / 3 ' =  90 °. Points on short-dashed lines lead to a 
mesh where a' I = c ' .  Points on solid lines lead to a 
transformed cell without special features. The letters 
H or S indicate special points that, after transforma- 
tion, lead to a hexagonal mesh (la'[ = Ic'[, /3 '= 120 °) 
or a square mesh ( a' = c ' , / 3 ' =  90°). 

The transformation to the best cell for space groups 
Pc, P2/ c and P21/ c* 

We shall at first discuss the cell transformation to a 
best cell for a structure already described with cell 
choice 1. Since the transformed structure should allow 
a description in a setting corresponding to the stan- 
dard space-group symbol (b axis unique), not all first 

* We shall use throughout most of this paper the standard short 
space-group symbols, which apply to all three cell choices (always 
with b axis unique) having three different full symbols. To indicate 
a particular cell choice we state the~standard short space-group 
symbol and the cell choice number. 

transformation matrices inscribed in Fig. 1 are permit- 
ted for space groups Pc, P2/c and P21/c. The con- 
straints on the matrix elements and the necessary 
origin shifts for monoclinic space groups in the setting 
with c axis unique have been studied by Billiet (1973) 
and Sayari & Billiet (1977). The restricting conditions 
on the matrix elements and the origin shifts for all 

"o~14 

0 0.1 o.z o.a 0.4 0.5 0.6 0.7 o.a I c 0 s ( 1 8 0 ° - / ~ )  
90 95.r ioI.~ io?.~ 113.~ ,zo 12e.9 134.4 443.1,50 B 

Fig. 2. c~ a versus cos (180 ° -  f l) diagram with inscribed reduction 
matrices for space groups P2, P21, Pm, P2/m and P21/m (b 
axis unique). The four-digit matrix elements are in normal type 
if the b vector is unchanged, but in italics if b changes direction. 
Points on long-dashed border lines lead after transformation to 
a mesh with /3'=90 °, those on short-dashed lines to a mesh 
where la'l--le1. H and S indicate special points that after trans- 
formation lead to a hexagonal or a square mesh in the monoclinic 
plane. 
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Table 1. Conditions for the matrix elements for a trans- 
formation of  a monoclinic structure ( b axis unique, cell 
choice 1) and origin shift that ensure that the transfor- 
med structure can be described with Wyckoff positions 
as given in IT(1983) (derived from matrix tables given 

by Billiet, 1973) 
Necessary  
origin 
shift for 
t r ans fo rmed  
a tom 

p q r s coord ina tes  Space  g roups  

P2, P21, Pro, 
P2/ rn, P2t/ m 
Pc, P2/c, P2Jc 
C2, Cm, C2/m 
Cc 

C2/c 

. . . .  000 
odd - -  even - -  000 
- -  even - -  odd 000 

odd even even odd 000 
odd even odd odd 0~0 (or 0~0) 
odd even even odd 000 
odd even odd odd aa011 (or ~0)33 

monoclinic space groups with b-axis setting, cell 
choice I, are summarized in Table 1. We find from 
Table 1 that for Pc, P2/c and P2~/c with cell choice 
1 only matrices with p = odd and r = even are allowed. 
Thus the glide plane in the transformed structure is 
a c glide and the Wyckoff positions as printed in 
IT(1983) for b-axis setting, cell choice 1, are appli- 
cable. 

For a demonstration we use a cell that has in Fig. 
1 a representative point in the 1211 field (point A). 
As first transformation matrix 1211 cannot be used 
(r = odd), however 1211 is acceptable. Two success- 
ive first transformations, all with p = odd and r = 
even, lead to the 1001 field as follows: 

D ~ A  D ~ B '  B ' ~ A  (10)(T 0 !) 
1 T T . = 0 0 

0 0 1 0 0 

In Fig. 3(a) are listed the one-step 1001 field-transfor- 
mation matrices to be used for P space groups with 
c-glide planes. We note that in comparison to Fig. 2 
the 1001 field is much larger because it includes also 
the form O1 I0 and 1011 fields. 

If the structure was originally described with cell 
choice 2 or 3, a transformation to cell choice 1 using 
the diagrams* illustrating different cell choices in 
IT(1983) should be made before the final transforma- 
tion to the best cell. For convenience the total trans- 
formation matrices (transformation cell choice 2 ~ 1 
or 3 ~ 1 plus final transformation) necessary to obtain 
a best cell with cell choice 1 are inscribed in Figs. 
3(b) and (c), respectively. The border lines between 
the different fields are drawn with full lines or with 

* These d iagrams  are only valid for  fully, half- or quar te r - reduced  
monocl in ic  meshes .  For  o ther  meshes  a t r ans fo rmat ion  accord ing  
to the d iagrams  leads to cells with an acute monocl in ic  angle. 

long dashes. For an explanation see the previous 
paragraph. All cells obtained by application of the 
matrices inscribed in Fig. 3 are either fully or half 
reduced [see chapter 2.16 or IT(1983)]. If the rep- 
resentative point of this best cell is to the left of the 
line with p = 1, q = 1 and to the left of the hyperbola 
with r = 1, s = 1 (see Fig. 1) the cell is fully reduced, 
otherwise it is half reduced.* 

The transformation to the best cell for space groups 
C2, Cm, C2/m, Cc and C2/c 

We shall start again with the transformation to a best 
cell for a structure already described with cell choice 
1. As shown in Table 1, for the transformation of 
C-centred monoclinic cells with cell choice 1, only 
matrices with q = even and s = odd can be used. For 
Cc and C2/c  there exists the extra condition that 
also p = odd. For the cos ( 180 ° - / 3 )  range chosen only 
matrices with p = odd occur. Thus the matrices for 
all five C-centred space groups can be presented in 
one diagram. 

The derivation of the matrices is in principle iden- 
tical to the case discussed above. We consider again 
as an example the monoclinic cell that in Fig. 1 has 
a representative point in the 1211 field. The_o_nly 
transformation matrix that can be used is the 1211, 
which leads to point B. A further reduction of the 
unit cell is not possible if we want to stay with cell 
choice 1. Thus the first transformation leads already 
to the final result, which is a half-reduced cell. 

In Fig. 4(a)  are given the one-step-1001-field-trans- 
formation matrices for the C-~entred space groups. 
The 1001 field in comparison to Fig. 2 includes here 
the former 0110 and 0111 fields. 

For structures originally described with cell choices 
2 or 3, the total transformation matrices (transforma- 
tion to cell choice 1 and final transformation to best 
cell) inscribed in Figs. 4(b) or (c) have to be used. 
For the meaning of the different border lines and the 
distinction between fully and half-reduced mono- 
clinic cells see above. 

The transformation of  the atom coordinates 

To transform atom coordinates the equations given 
in Table 2 have to be used. Attention has to be paid 
to whether the four-digit matrix elements in the figures 
are written in normal type or in italics. According to 
Table 1, for space groops Cc and C2/c  an origin 
shift is necessary for certain transformations in order 
to obtain atom positions that correspond to the Wyck- 

* We take the view that  it is preferable  to have only one cell 
choice (cell choice  1) for the s tandard iza t ion  and  consequent ly  
only 13 different monoc l in ic  space -g roup  symbols .  This decision 
implies that  some  s tandard ized  cells are ha l f  reduced  instead o f  
fully reduced.  For  other  reasons  to rely on the best cell with cell 
choice ! see below. 
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Table 2. The transformed atom coordinates for the 
different kinds of transformation matrices (expressed 
in Figs. 2, 3 and 4 in shortened form by their pqrs or 

pqrs matrix elements) 

Column I: For all monoclinic space groups, including Cc and 
C 2 / c ,  but for Cc and C 2 / c  only when the four-digit matrix elements 
in Fig. 4 are not framed. 
Column Ih For Cc only and only when the four-digit matrix 
elements in Fig. 4 are framed. 
Column IIh For C 2 / c  only and only when the four-digit matrix 
elements in Fig. 4 are framed. 

I II III 

pqrs 

pqrs 

x ' = + s x  - r z  x ' = + s x  - r s  x ' = + s x  -rz+¼ 
y '= +y  y '= +y+¼ y '= +y+¼ 

z' = - qx +pz z' = - qx +pz z' = - qx +pz 

x '=  - s x  +rz x '=  -$x  +rz x '= - s x  +rz+¼ 
y '= - y  y '= -y+¼ y '= -y+¼ 

z' = + qx - p z  z' = + qx - p x  z' = + qx - p z  

off positions given in IT( 1983).* The four-digit matrix 
elements of the transformations that require such an 
origin shift are framed in Fig. 4. These are the matrices 
with r = odd when the original structure was already 
described with cell choice 1 (Fig. 4a), the matrices 
with s = e v e n  when the original structure was 
described with cell choice 2 (Fig. 4b) or the matrices 
with r = even and s = odd when cell choice 3 was 
used for the description of the original structure (Fig. 
4c). 

Demonstration of the use of  the figures and of Table 2 

The use of the figures and Table 2 will be demon- 
strated on three structures, one organic, one inorganic 
and one of an alloy; in all three examples the struc- 
tures were described with a setting corresponding to 
a standard space-group symbol (b axis unique, cell 
choice 1), but the published cell parameters were not 
those of a best cell. It is shown that the transformation 
matrices can be determined easily from the figures. 

4'-Chloro- 2-hydroxy-4-methoxybenzophenone 
( Liebich, 1976) 

C2/c, a = 25.04, b = 3-935, c = 29.53 A, /3 = 122.0 °, 
c/a = 1.179, cos (180°- /3)=0.5299.  
Matrix elements from Fig. 4(a):  ~ - ~  
Best cell: a '  = 25.04, b' = 3.935, c' = 26.746 A, /3' = 
110.56 °, c'/a'= 1.068, cos (180°-/3 ') =0.351!  
Matrix elements from Fig. 4(a):  1001. 

* The origin shifts for certain cell transformations are related, 
in the case of  Cc, to the presence of  a glide plane at y = ¼ with a 
glide component  in the diagonal direction and, in the case of  C 2 / c ,  
to the occurrence of  a symmetry centre at ~ 0  where the glide plane 
passing through it has a diagonal glide component (see Billiet, 
1973). 

As indicated in the right-hand side of Table 2 the 
transformed atom coordinates have to be shifted by 
11 ~ 0 ) .  zzO (or 33 

Ca3(SiO3OH)2.2H20, 'Afwillite' ( Megaw, 1952) 

Cc, a = 16.27, b = 5.632, c = 13.23/~, /3 = 134°48 ', 
c/a = 0.8132, cos (180°- /3)  = 0.7046. 
Matrix elements from Fig. 4(a):  ~ I ]  
Best cell; a ' =  16.27, b '=5 .632 ,  c '=  11.68 A,, /3 '= 
126.5 °, c'/a'= 0.7178, cos (180°-/3 ') = 0.5949. 
Matrix elements from Fig. 4(a):  1001. 

As indicated in the middle part of Table 2 the 
transformed atom coordinates have to be shifted by 
0¼0 or oSo). 

AgAuTe4, 'sylvanite' ( Tunell & Pauling, 1952) 

P2/c, a = 8.96, b = 4.49, c = 14.62/~, fl = 145.43 °, 
c/a = 1.6317, cos (180° - f l )=0 .8234 .  
Matrix elements from Fig. 3(a):  1121. 
Best cell: a ' = 8 . 8 5 ,  b '=4 .49 ,  c '=10.17A, ,  /3 '= 
124.30 °, c'/a'= 1.1492, cos (180°-/3 ') = 0.5636. 
Matrix elements from Fig. 3(a): 1001. 

No origin shift is necessary for the transformed 
atom coordinates. 

Numerical test on the possibility of transforming a 
monoclinic cell described with cell choice I to a best cell 

A unit cell is not a best cell if its representative point 
is not in the 1001 field. The equations for the border 
lines limiting the 1001 fields in Figs. 2, 3(a) and 4(a)  
can be obtained from (4a) and (4b) by inserting the 
appropriate values for p, q, r and s (see corresponding 
labelled lines and hyperbolae in Fig. 1. For this test 
we shall ignore the fact that the best cell for space 
groups without glide planes and with a primitive 
Bravais lattice is the one where c/a -> 1 ; thus we shall 
consider here the boundary lines of the combined 
1001 and 0110 fields in Fig. 2. If necessary a simple 
interchange of the axes would always lead to the best 
cell. Since p and s are equal to 1 for the border lines 
in Fig. 2, 3(a)  and 4(a)  we obtain the following 
inequalities for a cell that can be transformed. 

c r c " ' . , ' , 2  

a 2cos (180°-/3)  if-->a 

and 

where 

and 

(6) 

c 2 c o s ( 1 8 0 ° - / 3 )  i f c < ( r ' ~  '/2 
a q a \q]  ' 

q = 1, r = 1 for P2, P21, Pro, P2/m, P21/m, 

q = 1, r = 2 ,  for Pc, P2/c, P21/c 

q = 2, r = 1 for C2, Cm, C2/m, Cc, C2/e. 
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Equation (6) can be used to find quickly whether 
a monoclinic unit cell with cell choice 1 can be trans- 
formed to a cell with smaller a and/or c vectors. 

We applied this algorithm to the data on monoclinic 
structures listed in the Cambridge Crystallographic 
Database, updated version of 1983 (Allen et al. 1979). 
Of the 21303 monoclinic structures that are described 
with 70(!) different space-group symbols, 14 798 are 
in a setting corresponding to a standard space-group 
symbol (b axis unique and cell choice 1 where appli- 
cable) and 10% of these (1460 to be exact) have a 
unit cell that is not the best one, that means that a 
and/or c are not the smallest vectors possible for cell 
choice I. 

The advantages of  a best cell with cell choice 1 as 
compared to a fully reduced cell with cell choices 1, 2 

or 3 

It has been shown above that the best unit cell con- 
sistent with cell choice 1 of IT(1983) is not necessarily 
fully reduced. It may be only half reduced and/3 may 
exceed 120 ° in some cases. The question arises 
whether it might not be better to use a fully reduced 
cell with c~ a >- 1,/3 <- 120 ° and one of the three differ- 
ent cell choices that are now explicitly given in 
IT(1983). To explain our preference for the best unit 
cell consistent with cell choice 1 we want to derive 
first the fully reduced cells from our results on the 
best unit cells consistent with cell choice 1. 

P2, P21, Pro, P2/ m and P2~/ m. The best cells with 
their representative points in the 1001 field of Fig. 2 
are already fully reduced. There is only one cell choice 
for these space groups. 

Pc, P2/c and P2~/c. We need to consider only the 
best cells that have their representative points in the 
1001 field of Fig. 3(a). If we superimpose the 1001 
field of Fig. 3(a) on Fig. 2 we note that the former 
1001 field has to be subdivided into three fields. The 
three matrices inscribed in Fig. 2 lead to fully reduced 
cells for Pc, P2/c and P2~/c, all with c/a>-l  and 
/3<_ 120 ° . 

1001 field: No transformation is necessary. These 
cells with cell choice 1 are already fully reduced. 

0110 field: Transformation with this matrix leads 
to a fully reduced cell with cell choice 3./3 remains 
unchanged, but c~ a changes to c~ a >- 1. 

1011 field: Transformation with this matrix leads 
from a half-reduced to a fully reduced cell with cell 
choice 2 and c/a-> 1. The new /3 and lal or Icl are 
smaller than before. 

C2, Crn, C2/ m, Cc and C2/c,. The procedure to 
obtain a fully reduced cell with c/a - 1 is similar to 
the one discussed above. Superimposition of Fig. 4(a) 
on Fig. 2 allows us to read from Fig. 2 the matrices 
needed for the transformation. 

1001 field: No transformation is necessary. The 
best cells with cell choice 1 are already fully reduced. 

0111 fields: Transformation with this matrix leads 
from a half-reduced cell to a fully reduced cell with 
cell choice 3 and c/a-> 1. The new /3 and lal or Icl 
are smaller than before. For space groups Cc and 
C2/c this transformation does not require any origin 
shift. 

0110 field: Transformation with this matrix leads 
to a fully reduced cell with cell choice 2. /3 remains 
unchanged, but c/a changes to c/a->l.  For space 
groups Cc and C2/c this transformation requires the 
transformed atom coordinates to be shifted by 010 
and 0¼¼ respectively in order to obtain atom positions 
that correspond to the Wyckoff positions given in IT 
(1983). 

In conclusion, we note that for space groups with 
glide planes and/or  nonprimitive Bravais lattices, 
depending on the c/a and/3 values of the best cell 
with cell choice 1, all three different cell choices have 
to be used if a fully reduced cell with c/a->l is 
required.* 

A standardized unit-cell description based on a 
fully reduced unit cell with c/a >-1 would be fully 
appropriate if a structure is considered by itself. The 
purpose of a structure data standardization is, 
however, twofold. Not only should a method be found 
to describe a structure in a unique way, but it should 
also be possible to recognize the similarity of slightly 
different structures with slightly different c/a and/3 
values. Instead of the single 1001 field for the best 
unit cell with cell choice 1 there are for fully reduced 
cells three different fields. Two closely related struc- 
tures with their representative points on different sides 
of the border line between two fields will have, if they 
are described with fully reduced cells, unit cells and 
atom coordinates so different that the recognition of 
their similarity is not evident. By choosing the best 
cell consistent with cell choice 1 there are less border 
lines and less examples will occur where geometri- 
cally closely related structures, owing to the particular 
unit-cell metric, will be described in a way that masks 
their similarity. 

As an example, we compare in Table 3 the lattice 
parameters and atom coordinates of monoclinic 
Sc2FeSi2, recently determined independently in two 
different laboratories, described both by the best cell 
in cell choice 1 and by the fully reduced cell. From 
the numerical values of the atom coordinates referred 

* As a demonstration we give here the fully reduced cells with 
c~ a -> 1 for the three examples discussed above. 

Substituted chlorobenzophenone 
C l 2/c l: a =25.04, b=3.935, c = 26.746/~, /3 = 110.56 ° (C2/c, 
cell choice l). 

Afwillite 
l l a l :  a=11.68, b=5.632, c=13.23~, /3=98.7 ° (Cc, cell 
choice 3). 

Sylvanite 
P12/nl:a=8.85, b=4.49, c=8.96/~, /3=110.36 ° (P2/c, cell 
choice 2). 
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Table 3. Standardized structural data for Sc2FeSi2 
(space group C 2 / m )  from two independent structure 
determinations using both a best cell consistent with 

cell choice 1 and a fully reduced cell with c~ a >- 1. 

All atoms are in equipoint  4(i). 

Best cell consistent with Fully reduced cell 
Refs cell choice 1 with c/a >- 1 
(a) C I 2/m 1 (C 2/m, cell choice 1) A 1 2/m 1 (C 2/m, cell choice 2) 

a =9.916, b=3.9912, c=9.414.~, a =9.414, b=3.9912, c=9.916.~, 
fl = 118"15 ° /3 = 118.15 ° 

Atoms in ±(x0z)+[½½0] Atoms in ±(x0z)+[0½½] 
Sc(l) -0.0002 0 0.3269 Sc(1) 0.1731 0 0.0002 
Sc(2) 0.1856 0 0.1077 Se(2) 0.6077 0 0.1856 
Fe 0.2720 0 0.6305 Fe 0-1305 0 0.2720 
Si(l) 0.3567 0 0.4348 Si(l) 0.0652 0 0-6433 
Si(2) 0.4891 0,L 0.1234 Si(2) 0.3766 0 0.5109 

(b)* C 1 2/m I (C 2/m, cell choice 1) I 1 2/m 1 (C 2/m, cell choice 3) 
a =9.938, b =3.984, c=9.409/~, a=9.409, b=3.984, c= 9.9082 /~, 

fl = 118.46" fl= 118.14 ° 
Atoms in ± (xOz) +[1½0] Atoms in ±(xOz) +[½~½] 

So(I) -0.0002 0 0.3275 So(l) 0.1723 0 -0.0002 
Sc(2) 0-1859 0 0.1080 Se(2) 0.5779 0 0.1859 
Fe 0.2715 0 0.6302 Fe 0.1413 0 0.2715 
Si(1) 0"3569 0 0.4350 Si(l) 0-4219 0 0.3569 
Si(2) 0.4893 0 0.1237 Si(2) 0.1344 0 0.5107 

References: (a) Chabot, Engel & Parth6 (1984); (b) Kotur & Sikiritsa (1983). 
* The atom coordinates for Sc2FeSi2 published by Kotur & Sikiritsa (1983) 

do not apply to the monoclinic unit cell given in their paper, but to the 
different unit cell published for Sc2CoSi2 (a and/or b are not the smallest 
values possible). The authors obviously wanted to demonstrate that Sc2FeSi2 
is isostructural with Sc2CoSi2 (Giadyshevskii & Kotur, 1978). 

to the best cells it is evident that the two structure 
determinations gave identical results, whereas a study 
of the right-hand side of Table 3 would not have 
convinced us that the two determinations concern the 
same structure. 

Concluding remarks 

We suggest that each author before publishing data 
on a monoclinic structure makes certain by use of 
the figures that he really has a best cell with the 
shortest a and c vectors possible for cell choice 1. In 
this case it will be much simpler to recognize identical 
structures by the similarity of their lattice-parameter 
ratios. It is also hoped that these unit-cell transforma- 
tions will be considered in the crystallographic 
database. 
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